
UNIT -I
INTRODUCTION TO ASICS, CMOS 

LOGIC, ASIC LIBRARY DESIGN 



Introduction

• ASIC [“a-sick”] is an acronym for  Application Specific 
Integrated Circuit.

• As  the name indicates, ASIC is a  non-standard integrated 
circuit  that  is  designed for a specific use or application.

• Generally an ASIC design will be undertaken for a product 
that will have a large production run , and the ASIC may 
contain a very large part of the electronics needed on a single 
integrated circuit.



Contd..
• Examples for ASIC Ics are : a chip for a toy bear that talks; a

chip for a satellite; a chip designed to handle the interface
between memory and a microprocessor for a workstation CPU;
and a chip containing a microprocessor as a cell together with
other logic.



Contd..

• Two ICs that might or might not be considered as ASICs are, a
controller chip for a PC and a chip for a modem. Both of these
examples are specific to an application (shades of an ASIC)
but are sold to many different system vendors (shades of a
standard part). ASICs such as these are sometimes called
application-specific standard products ( ASSPs ).



Types of ASICs
• The classification of ASICs is shown below



Contd..
• So, as shown in the slide the ASICs are broadly classified into 

three types.
• I. Full-Custom ASICs
• II. Semi-custom ASICs
• III. Programmable ASICs



Full-Custom ASICs
• A Full custom ASIC is one which includes some (possibly all)

logic cells that are customized and all mask layers that are
customized.

• A microprocessor is an example of a full-custom IC . Designers
spend many hours squeezing the most out of every last square
micron of microprocessor chip space by hand.

• Customizing all of the IC features in this way allows designers
to include analog circuits, optimized memory cells, or
mechanical structures on an IC, for example. Full-custom ICs
are the most expensive to manufacture and to design.
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• The manufacturing lead time (the time required just to make

an IC not including design time) is typically eight weeks for a
full-custom IC.

• These specialized full-custom ICs are often intended for a
specific application so, we might call some of them as full-
custom ASICs.



Contd…

• In a full-custom ASIC an engineer designs some or all of the
logic cells, circuits, or layout specifically for one ASIC. This
means the designer avoids using pretested and pre characterized
cells for all or part of that design.

• This might be because existing cell libraries are not fast enough,
or the logic cells are not small enough or consume too much
power.
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• One has to use full-custom design if the ASIC technology is

new or so specialized that there are no existing cell libraries or
because the ASIC is so specialized that some circuits must be
custom designed.

• Fewer and fewer full-custom ICs are being designed because
of the problems with these special parts of the ASIC.

• The growing member of this family, now a days is the
mixed analog/digital ASIC,



Semicustom ASICs
• ASICs , for which all of the logic cells are predesigned and some (possibly

all) of the mask layers are customized are called semi custom ASICs.
• Using  the predesigned cells from a cell library makes the design , much 

easier.
• There are two types of semicustom ASICs 

• (i) Standard-cell–based    ASICs  (ii)Gate-array–based ASICs.



Standard-Cell Based ASICs
• A cell-based ASIC (cell-based IC, or CBIC pronounced sea-bick)

uses predesigned logic cells (AND gates, OR gates,
multiplexers, and flip-flops, for example) known as standard
cells.

• One can apply the term CBIC to any IC that uses cells, but it
is generally accepted that a cell-based ASIC or CBIC means a
standard-cell based ASIC.
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• The standard-cell areas (also called flexible blocks) in a CBIC

are built of rows of standard cells like a wall built of bricks.
The standard-cell areas may be used in combination with
microcontrollers or even microprocessors, known as mega
cells. Mega cells are also called mega functions, full-custom
blocks, system-level macros (SLMs), fixed blocks, cores, or
Functional Standard Blocks (FSBs).



A cell-based ASIC (CBIC) die with a single
standard-cell area (a flexible block) together with
four fixed blocks.
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• The ASIC designer defines only the placement of the standard

cells and the interconnect in a CBIC. However, the standard
cells can be placed anywhere on the silicon; this means that all
the mask layers of a CBIC are customized and are unique to a
particular customer.

• The advantage of CBICs is that designers save time, money,
and reduce risk by using a predesigned, pretested, and pre
characterized standard-cell library.

• In addition each standard cell can be optimized individually.
During the design of the cell library each and every transistor
in every standard cell can be chosen to maximize speed or
minimize area .



Contd…

• The disadvantages are the time or expense of designing or
buying the standard-cell library and the time needed to
fabricate all layers of the ASIC for each new design.



Gate-Array Based ASICs
• In a gate array (sometimes abbreviated GA) or gate-array

based ASIC the transistors are predefined on the silicon wafer.
• The predefined pattern of transistors on a gate array is the base

array , and the smallest element that is replicated to make the
base array is the base cell (sometimes called a primitive cell ).
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• Only the top few layers of metal, which define the interconnect

between transistors, are defined by the designer using custom
masks. To distinguish this type of gate array from other types
of gate array, it is often called a masked gate array ( MGA ).

• The designer chooses from a gate-array library of predesigned 
and pre-characterized logic cells



Contd…

• The logic cells in a gate-array library are often called macros .
The reason for this is that the base-cell layout is the same for
each logic cell, and only the interconnect (inside cells and
between cells) is customized, which is similar to a software
macro.



Types of MGA or Gate-array based ASICs

• There are three types of Gate Array based ASICs.
• Channeled gate arrays.
• Channelless gate arrays.
• Structured gate arrays.



Channeled gate arrays

• The channeled gate array was the first to be developed . In a
channeled gate array space is left between the rows of
transistors for wiring.

• A channeled gate array is similar to a CBIC. Both use the rows
of cells separated by channels used for interconnect. One
difference is that the space for interconnect between rows of
cells are fixed in height in a channeled gate array, whereas the
space between rows of cells may be adjusted in a CBIC.



A channeled gate-array die



Features of  MGA 
• Only the interconnect is customized.
• The interconnect uses predefined spaces between rows of base 

cells.
• Manufacturing lead time is between two days and two weeks.



Channel less Gate Array

• This channel less gate-array architecture is now more widely
used . The routing on a channelless gate array uses rows of
unused transistors.

• The key difference between a channel less gate array and
channeled gate array is that there are no predefined areas set
aside for routing between cells on a channel less gate array.
Instead we route over the top of the gate-array devices. We
can do this because we customize the contact layer that defines
the connections between metal 1, the first layer of metal, and
the transistors.



Features of  Channel less Gate Array
• Only the interconnect is customized.
• The interconnect uses predefined spaces between rows of base

cells.
• Manufacturing lead time is around two days to two weeks.
• When we use an area of transistors for routing in a channel 

less array, we do not make any contacts to the devices lying 
underneath , we simply leave the transistors unused.



A channel less gate-array or sea-of-gates 
(SOG) array die.
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• The basic difference between a channel less gate array and

channeled gate array is that there are no predefined areas set
aside for routing between cells on a channel less gate array.
Instead we route over the top of the gate-array devices.

• It is done like this because we customize the contact layer that
defines the connections between metal1, the first layer of
metal, and the transistors. When we use an area of transistors
for routing in a channel less array, we do not make any
contacts to the devices lying underneath; we simply leave the
transistors unused.
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• The logic density ,the amount of logic that can be implemented

in a given silicon area is higher for channel less gate arrays
than for channeled gate arrays. This is usually attributed to the
difference in structure between the two types of array. In fact,
the difference occurs because the contact mask is customized
in a channel less gate array, but is not usually customized in a
channeled gate array. This leads to denser cells in the channel
less architectures. Customizing the contact layer in a channel
less gate array allows us to increase the density of gate-array
cells because we can route over the top of unused contact sites.



Structured Gate Array
• A structured or embedded gate-array die showing an embedded

block in the upper left corner



Feature Of Structured Gate Array

• Only the interconnect is customized
• Custom Blocks(same for each design can be embedded)
• Manufacturing lead time is between two days and two weeks.
• An embedded gate array gives the improved area efficiency

and increased performance of a CBIC but with the lower cost
and faster turn around of an MGA.

• The disadvantage of an embedded gate array is that the
embedded function is fixed.
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• For example, if an embedded gate array contains an area set

aside for a 32 k-bit memory, but we only need a 16 k-bit
memory, then we may have to waste half of the embedded
memory function. However, this may still be more efficient
and cheaper than implementing a 32 k-bit memory using
macros on a SOG array



Programmable Logic Devices
• Programmable logic devices ( PLDs ) are standard ICs that are

available in standard configurations.
• However, PLDs may be configured or programmed to create a

part customized to a specific application, and so they also
belong to the family of ASICs.

• PLDs use different technologies to allow programming of the
device.



A programmable logic device (PLD) die.



Features  of PLDs 
• No customized mask layers or logic cells
• Fast design turnaround
• A single large block of programmable interconnect
• A matrix of logic macro cells that usually consist of 

programmable array logic followed by a flip-flop or latch



Contd…

• The simplest type of programmable IC is a read-only memory(
ROM ). The most common types of ROM use a metal fuse that
can be blown permanently (a programmable ROM or PROM ).

• An electrically programmable ROM , or EPROM , uses
programmable MOS transistors whose characteristics are
altered by applying a high voltage.
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• One can erase an EPROM either by using another high

voltage (an electrically erasable PROM , or EEPROM ) or by
exposing the device to ultraviolet light (UV-erasable PROM,
or UVPROM).

• There is another type of ROM that can be placed on any ASIC
a mask-programmable ROM (mask-programmed ROM or
masked ROM). A masked ROM is a regular array of
transistors permanently programmed using custom mask
patterns.

• So, an embedded masked ROM is a large,
specialized, logic cell.



Field-Programmable Gate Arrays(FPGAs)
• FPGAs are the newest member of the ASIC family and are

rapidly growing in , replacing TTL in microelectronic systems.
Even though an FPGA is a type of gate array, we do not
consider the term gate-array based ASICs to include FPGAs.

• There is very little difference between an FPGA and a PLD
.An FPGA is usually just larger and more complex than a
PLD. In fact, some vendors that manufacture programmable
ASICs call their products as FPGAs and some call them as
complex PLDs .



Characteristics of an FPGA
• None of the mask layers are customized.
• There is a  method for programming the basic logic cells and 

the interconnect.
• The core is a regular array of programmable basic logic cells 

that can  implement combinational as well as sequential logic 
(flip-flops).

• A matrix of programmable interconnect surrounds the basic 
logic cells.

• Programmable I/O cells surround the core.
• Design turnaround is a few hours.



Field-programmable gate array (FPGA) die.
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• The architecture consists of configurable logic blocks,

configurable I/O blocks, and programmable interconnect.
Also, there will be clock circuitry for driving the clock signals
to each logic block, and additional logic resources such as
ALUs, memory, and decoders may be available. The two
basic types of programmable elements for an FPGA are Static

RAM and anti-fuses.



CPLDs  vs. FPGAs

CPLD                            FPGA
• Architecture:    PAL-like                    Gate Array-like
• Density         : Low to medium         Medium to high
• Speed           : Fast, predictable          Application  

dependent 
• Interconnect: Crossbar                        Routing
• Power Consumption:  High              Medium



Design Flow
• The sequence of steps to design an ASIC is known as the

Design flow . The various steps involved in ASIC design flow
are given below.

1. Design entry : Design entry is a stage where the micro
architecture is implemented in a Hardware Description
language like VHDL, Verilog , System Verilog etc.
In early days , a schematic editor was used for design entry
where designers instantiated gates. Increased complexity in
the current designs require the use of HDLs to gain
productivity . Another advantage is that HDLs are
independent

.
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2. Logic synthesis: Use an HDL (VHDL or Verilog) and a logic 
synthesis tool to produce a net list a description of the logic 
cells and their connections

3.System partitioning : Divide a large system into ASIC-sized 
pieces.

4. Pre-layout simulation: Check to see if the design functions 
correctly.

5. Floor planning: Arrange the blocks of the netlist on the chip.
6. Placement: Decide the locations of cells in a block.
7. Routing: Make the connections between cells and blocks.
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8.Extraction : Determine the resistance  and     capacitance of 

the interconnect.
9. Post layout simulation. It is used to check to see whether the

design still works with the added loads of the interconnect or
not

The flow diagram is shown in the next slide.



ASIC design flow diagram
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• In the flow diagram the steps from 1 to 4 are part of logical

design ,and steps from 5 to 9 are part of physical design.

• When we are performing system partitioning we have to 
consider both logical and physical factors.



CMOS Design Rules
• The design rules are Interface between designer and process

engineer and guidelines for constructing process masks
• The figures in the next slides defines the design rules for a

CMOS process using pictures. Arrows between objects denote
a minimum spacing, and arrows showing the size of an object
denote a minimum width.



Diagram 1



Diagram 2



Combinational Logic Cell



Pushing Bubbles

• The AOI and OAI logic cells can be built using CMOS using 
series parallel network of transistors called stacks. The 
following figure illustrates the procedure to build the n channel 
and p channel stacks using the AOI221 cell as an example





Transmission Gate

• The following figure shows the CMOS transmission gate 
(TG,Tx gate,pass gate,coupler) We connect a p channel 
transistor(to transmit a strong 1) in parallel with a n channel 
transistor(to transmit a strong 0)



Transistor as Resistors



Junction Capacitance

• The junction capacitances, C BD and C BS , consist of two parts: 
junction area and sidewall; both have different physical 
characteristics with parameters CJ and MJ for the 
junction, CJSW and MJSW for the sidewall, and PB is 
common. These capacitances depend on the voltage across the 
junction ( V DB and V SB ). 



Overlap Capacitance

• The overlap capacitance account for lateral diffusion (the 
amount the source and drain extend under the gate) using 
SPICE parameter LD = 5E-08 or L D = 0.05 m m. 

• Not all versions of SPICE use the equivalent parameter for 
width reduction, WD in calculating C GDOV and not all 
versions subtract W D to form W EFF .



Gate Capacitance

• The gate–bulk capacitance C GB may be viewed as two 
capacitors in series: the fixed gate-oxide capacitance, 
C O = W EFFL EFF e ox / T ox . Variable  depletion 
Capacitance, C S = W EFF L EFF e Si / x d , formed by the 
depletion region that extends under the gate (with varying 
depth x d ).



Computation of Logical Effort



Library –Cell Design

• The optimum cell layout for each process generation changes 
because the design rules for each ASIC vendor’s process are 
always slightly different—even for the same generation of  
technology. For example, two companies may have very 
similar 0.35 m m CMOS process technologies, but the third-
level metal spacing might be slightly different. 

• If a cell library is to be used with both processes, we could 
construct the library by adopting the most stringent rules from 
each process. 

•



Library – Cell Design(Cont)

• A library constructed in this fashion may not be competitive 
with one that is constructed specifically for each process. 

• The reason that most vendors have similar rules is because 
most vendors use the same manufacturing equipment and a 
similar process. It is possible to construct a highest common 
denominator library that extracts the most from the current 
manufacturing capability



Cont
• Layout of library cells is either hand-crafted or uses 

some form of symbolic layout . 
• Symbolic layout is usually performed in one of two 

ways: using either interactive graphics or a text 
layout language. Shapes are represented by simple 
lines or rectangles, known as sticks or logs , in 
symbolic layout. The actual dimensions of the 
sticks or logs are determined after layout is 
completed in a post processing step. 



Cont
• An alternative to graphical symbolic layout uses a text layout 

language, similar to a programming language such as C, that 
directs a program to assemble layout. The spacing and 
dimensions of the layout shapes are defined in terms of 
variables rather than constants. These variables can be changed 
after symbolic layout is complete to adjust the layout spacing 
to a specific process.

• As libraries get larger, and the capability to quickly move 
libraries and ASIC designs between different generations of 
process technologies becomes more important, the advantages 
of symbolic layout may outweigh the disadvantage



UNIT - II

PROGRAMMABLE ASICS, 
PROGRAMMABLE ASIC 

LOGIC CELLS



Programmable ASICs

• Two basic types of programmable ASICs
– Programmable Logic Device (PLD) - first developed as 

small programmable devices that can replace a handful of 
TTL parts 

• least complex ones are a simple AND/OR PLA with 
latches on the outputs and feedback paths to the inputs 
of the array

– Field Programmable Gate Array (FPGA) - more complex 
devices that can hold up to 100K gate equivalents or more

• some implemented as symmetrical arrays of simple 
logic devices

• others include more complex and specialized logic 
blocks

• Automatic tools create a string of bits (a configuration file) 
describing the extra connections necessary to program the 
FPGA to perform the required function



Programming Technologies

• Static RAM cells- Flipflops of static RAM
• Anti-fuse – Burnable Joints
• EPROM (Erasable Programmable Read Only 

Memory),EEPROM(Electrically Erasable 
Programmable Read Only Memory) and Flash ROM 
elements commanded by floating gate



Anti Fuse Technology

• An antifuse is normally open
• A high programming voltage is placed across it
• This forces a programming current (about 5 mA) through it 

which melts the thin insulating dielectric forming a permanent,  
resistive silicon link

An Actel antifuse. (a) A cross section. (b) A simplified drawing. (c) From above, an 
antifuse is approximately the same size as a contact.

• An Actel antifuse. (a) A cross section. (b) A simplified 
drawing. (c) From above, an antifuse is approximately 
the same size as a contact.



SRAM Technology

• Characteristics Of SRAM technology:
• Functional blocks and joints are commanded by SRAM flip-

flops
• Joint elements are located in the surfaced of the same crystal.
• Programming takes place after turning power on.Its posssible

to reconfigure while working.





EEPROM TECHNOLOGY





An 8-bit datapath consisting of 4:1 MUX, register, and shift-
register
An 8-bit timer–counter consisting of two registers, a 4:1 
MUX, a counter and a comparator
A small state machine (8 states, 8 inputs, and 8 outputs)
A larger state machine (16 states, 8 inputs, and 8 outputs)
An ALU consisting of a 4 ¥ 4 multiplier, an 8-bit adder, and 
an 8-bit register
A 16-bit accumulator
A 16-bit counter with synchronous load and enable
A 16-bit prescaled counter with load and enable
A 16-bit address decoder

PREP BENCHMARKS



ASIC Logic Cells

All FPGAs contain a basic logic cell replicated in a 
regular array across the chip

There are three different types of basic logic cells:
multiplexer based
look-up table based
programmable array based



Actel ACT1 Multiplexer Based Logic Cell

 Logic functions can be built by connecting logic signals to 
some or all of the Logic Module’s inputs and by connecting the 
remaining Logic Module inputs to VDD or GND

Figure 5.1 The Actel ACT1 architecture. (a) Organization of the basic cells. (b) The ACT1 logic 
module. (c) An implementation using pass transistors. (d) An example logic macro.



Shannon’s Expansion Theorem
• We can use Shannon’s expansion theorem to expand a 

function:F = A · F (A = ‘1’) + A' · F (A = ‘0’)
– Where F(A=‘1’) is the function evaluated with A=‘1’ and 

F(A=‘0’) is the function evaluated with A=‘0’

Example: F = A' · B + A · B · C' + A' · B' · C
= A · (B · C') + A' · (B + B' · C) 

F (A = '1') = B · C' is the cofactor of F with respect to ( wrt ) A 
or FA

• Eventually we reach the unique canonical form , which uses 
only minterms

• Final result for example above should be:
• F = A' · B · C + A' · B' · C + A · B · C' + A' · B · C'



Boolean Functions of Two 
Variables Using a 2:1 Mux

Function, F F = Canonical form Minterms Minterm
code

Function
number

M1
A0   A1 SA

1 '0' '0' '0' none 0000 0 0 0 0
2 NOR1-1(A, B) (A + B') A' · B 1 0010 2 B 0 A
3 NOT(A) A' A' · B' + A' · B 0, 1 0011 3 0 1 A
4 AND1-1(A, B) A · B' A · B' 2 0100 4 A 0 B
5 NOT(B) B' A' · B' + A · B' 0, 2 0101 5 0 1 B
6 BUF(B) B A' · B + A · B 1, 3 1010 6 0 B 1
7 AND(A, B) A · B A · B 3 1000 8 0 B A
8 BUF(A) A A · B' + A · B 2, 3 1100 9 0 A 1
9 OR(A, B) A + B A' · B + A · B' + A · B 1, 2, 3 1110 13 B 1 A
10 '1' '1' A' · B' + A' · B + A · B' + A · B 0, 1, 2, 3 1111 15 1 1 1



ACT1 LM as a Function Wheel (cont.)

• A 2:1 MUX is a function wheel that can generate BUF, INV, 
AND-11, AND1-1, OR, AND

• Define a function WHEEL (A, B) = MUX (A0, A1, SA)
• MUX (A0, A1, SA) = A0 · SA' + A1 · SA
• Each of the inputs (A0, A1, and SA) may be A, B, '0', or '1'
• The ACT 1 LM is built from two function wheels, a 2:1 MUX, 

and a two-input OR gate:

ACT 1 LM = MUX [WHEEL1, WHEEL2, OR (S0, S1)]



ACT1 LM as a Function Wheel

Figure 5.3 The ACT1 logic module as a boolean function generator. (a) A 2:1 MUX viewed as a 
logic wheel. (b) The ACT1 logic module viewed as two function wheels.



Example of Implementing a 
Function with an ACT1 LM

• Example of using the WHEEL functions to implement:
F = NAND (A, B) = (A · B)’

1. First express F as the output of a 2:1 MUX: 
expand F wrt A (or wrt B; since F is symmetric) 

F = A · (B') + A' · ('1') 

2. Assign WHEEL1 to implement INV (B), and WHEEL2 to implement '1' 

3. Set the select input to the MUX connecting WHEEL1 and WHEEL2, S0 + S1 = 
A. We can do this using S0 = A, S1 = '1' 

• A single Actel ACT1 LM can implement all combinational two-input functions, 
most three input functions and many four input functions

• A transparent D latch can be implemented with one ACT1 LM and an edge 
triggered D flip-flop can be implemented with two LM’s



Actel ACT2 and ACT3 Logic 
Modules The ACT2 and 

ACT3 logic 
modules. (a) The C-
module. (b) The 
ACT2 S-module. (c) 
The ACT3 S-
module. (d) The 
equivalent circuit of 
the SE. (e) The SE 
configured as a 
positive edge-
triggered D flip-flop.



Actel Timing Model
 Exact delay values in Actel FPGAs can not 

be determined until interconnect delay is 
known - i.e., place and route are done

 Critical path delay between registers is:
tPD + tSUD + tCO

 There is also a hold time for the flip-flops -
tH

 The combinational logic delay tPD is 
dependent on the logic function (which may 
take more than one LM) and the wiring 
delays

 The flip-flop output delay tCO can also be 
influenced by the number of gates it drives 
(fanout)

The Actel ACT timing model. (a) 
The timing parameters for a ‘std’ 
speed grade ACT3. (b) Flip-flop 
timing. (c) An example of flip-
flop timing based on ACT3 
parameters.



Xilinx Configurable Logic Block 
(CLB)

Figure 5.6 The Xilinx XC3000 CLB (configurable logic block).



Xilinx CLB (cont.)
• The combinational function in a CLB is implemented with a 32 bit look-up 

table (LUT)
– LUT values are stored in 32 bits of SRAM
– CLB delay is fixed and equal to the LUT access time

• There are seven inputs to the LUT, the five CLB inputs (A-E) and the flip-
flop outputs (QX and QY) and two outputs (F,G)

• There are several ways to use the LUT:
– You can use five of the seven possible inputs (A-E<QX,QY) with the 

entire LUT - the outputs (F,G) are identical
– You can split the 32-bit LUT in half to implement two functions of four 

variables
• The input variable can be chosen from A-E,QX,QY
• Two of the inputs must come from A-E

– You can split the LUT in half and use one of the seven input variables 
to select between the F and G output - allows some functions of seven 
variables to be implemented



Xilinx XC4000 Logic Block
 Cell contains 2 four-input LUTs that feed a three input LUT
 Cell also has special fast carry logic hard-wired between CLBs

Figure 5.7 The Xilinx XC4000 CLB (configurable logic block).



Xilinx XC5200 Logic Block
 Basic Cell is called a Logic Cell (LC) and is similar to, but 

simpler than, CLBs in other Xilinx families
 Term CLB is used here to mean a group of 4 LCs (LC0-LC3)



Implementing Functions with Xilinx 
CLBs

• Combinational logic functions all have the same delay - a 5 
input NAND is as slow (fast) as an inverter

• For maximum efficiency, the tools must group logic functions 
into blocks the utilize the CLB efficiently (i.e., utilize an high 
percentage of its functionality)

• LUT simplifies the timing model when using synchronous 
logic

• The LUT matches the Xilinx SRAM programming technology 
well

• SRAM within the LUT can be used a general purpose, on-chip 
SRAM, but it is expensive



Xilinx Timing Model



Altera FLEX Architecture
 Basic Cell is called a Logic Element (LE) and resembles the Xilinx 

XC5200 LC architecture
 Altera FLEX uses the same SRAM programming technology as Xilinx



Programmable Logic Array
 Programmable AND array 

feeding into an OR array 
can implement a canonical 
sum-of-products form of 
an expression

 n-channel EPROM 
transistors wired to a pull-
up resistor can implement 
a wired-AND function of 
the inputs
 Output is high only when 

all the inputs are high
 The inputs must be 

inverted

Logic Arrays. (a) Two-level 
logic. (b) Organized sum of 
products. (c) A programmable-
AND plane. (d) EPROM logic 
array. (e) Wired logic.



Registered PAL

A registered PAL with I inputs, j product terms, and k macrocells.



Logic Expander

• A logic expander is an output line of the AND array that feeds 
back as an input to the array itself

• Logic expanders can help implement functions that require 
more product terms than are available in a simple PAL

• Consider implementing this function in in a three-wide OR 
array:

F = A’ · C · D + B’ · C · D + A · B + B · C’
• This can be rewritten as a “sum of (products of products):

F = (A’ + B’) · C · D + (A + C’) · B
F = (A · B)’ (C · D) + (A’ · C)’ · B

• Logic expanders can be used to form the expander terms        
(A · B)’  and (A’ · C)’ 



Logic Expander Implementation

Figure 5.13 Expander logic and programmable inversion.



Simplifying Logic with Programmed 
Inversion

Figure 5.14 Use of programmed inversion to simplify logic. (a) The function F = AB’+ AC’+ AD’+ A’CD requires four product 
terms to implement while (b) the complement F’ = ABCD+ A’D’+ A’C’ requires only three product terms.



Altera MAX Architecture

 Macrocell features:
 Wide, programmable 

AND array
 Narrow, fixed OR array
 Logic Expanders
 Programmable inversion

Figure 5.15 The Altera MAX architecture. (a) 
Organization of logic and 
interconnect. (b) A MAX family 
LAB (Logic Array Block). (c) A 
MAX family macrocell.



Altera MAX Timing Model
The timing model for the Altera
MAX architecture. (a) A direct 
path through the logic array 
and a register. (b) Timing for 
the direct path. (c) Using a 
parallel expander. (d) Parallel 
expander timing. (e) Making 
two passes through the logic 
array to use a shared 
expander. (f) Timing for the 
shared expander.



UNIT III

PROGRAMMABLE ASIC 
INTERCONNECT, 

PROGRAMMABLE ASIC DESIGN 
SOFTWARE AND LOW LEVEL 

DESIGN



Actel ACT
• The Actel ACT family interconnect scheme shown which is 

similar to a channeled gate array. The channel routing uses 
dedicated rectangular areas of fixed size within the chip 
called wiring channels (or just channels ). 

• The horizontal channels run across the chip in the horizontal 
direction. In the vertical direction there are similar vertical 
channels that run over the top of the basic logic cells, the 
Logic Modules. 

• Within the horizontal or vertical channels wires run 
horizontally or vertically, respectively, within tracks . 

• Each track holds one wire. The capacity of a fixed wiring 
channel is equal to the number of tracks it contains.

• A detailed view of the channel and the connections to each 
Logic Module—the input stubs and output stubs are shown.







RC DELAY IN ANTIFUSE 
CONNECTION

• Suppose a single antifuse, with resistance R 1 , connects to a 
wire segment with parasitic capacitance C 1 . Then a 
connection employing a single antifuse will delay the signal 
passing along that connection by approximately one time 
constant, or R 1 C 1 seconds. If we have more than one 
antifuse, we need to use the Elmore time constant to estimate 
the interconnect delay.



RC Delay calculation

For example, suppose we have the four-antifuse connection 
shown in figure. Then

t D 4=R 14 C 1 + R 24 C 2 + R 14 C 1 + R 44 C 4 =

R 1 + R 2 + R 3 + R 4 ) C 4 + (R 1 + R 2 + R 3 ) C 3 + (R 1 + R 2 ) C 2 + R 1 C 1

If all the antifuse resistances are approximately equal (a 
reasonably good assumption) and the antifuse resistance is 
much larger than the resistance of any of the metal lines, L1–
L5, shown in figure then R 1 = R 2 = R3 = R 4 = R , and the 
Elmore time constant is  t D 4= 4 RC 4 + 3 RC 3 + RC 2 + RC 1



ACT 2 and ACT 3 INTERCONNECT

• The ACT 1 architecture uses two antifuses for routing nearby 
modules, three antifuses to join horizontal segments, and four 
antifuses to use a horizontal or vertical long track. 

• The ACT 2 and ACT 3 architectures use increased interconnect 
resources over the ACT 1 device that we have described. This 
reduces further the number of connections that need more than 
two antifuses. Delay is also reduced by decreasing the 
population of antifuses in the channels, and by decreasing the 
antifuse resistance of certain critical antifuses (by increasing 
the programming current).



Xilinx LCA



Xilinx LCA Interconnect Architecture

• The vertical lines and horizontal lines run between CLBs.
• The general-purpose interconnect joins switch boxes (also 

known as magic boxes or switching matrices).
• The long lines run across the entire chip. It is possible to form 

internal buses using long lines and the three-state buffers that 
are next to each CLB.

• The direct connections (not used on the XC4000) bypass the 
switch matrices and directly connect adjacent CLBs.

• The Programmable Interconnection Points ( PIP s) are 
programmable pass transistors that connect the CLB inputs 
and outputs to the routing network.

• The bidirectional ( BIDI ) interconnect buffers restore the logic 
level and logic strength on long interconnect paths.



Components of Interconnect Delay in 
Xilinx LCA



cont…

• C1 = 3CP1 + 3CP2 + 0. 5C LX is the parasitic capacitance due to the 
switch matrix and PIPs (F4, C4, G4) for CLB1, and half of the line 
capacitance for the double-length line adjacent to CLB1.

• C P1 and R P1 are the switching-matrix parasitic capacitance and 
resistance.

• C P2 and R P2 are the parasitic capacitance and resistance for the PIP 
connecting YQ of CLB1 and F4 of CLB3.

• C2 = 0. 5CLX + CLX accounts for half of the line adjacent to CLB1 
and the line adjacent to CLB2.

• C 3 = 0. 5C LX accounts for half of the line adjacent to CLB3.
• C 4 = 0. 5C LX + 3C P2 + C LX + 3C P1 accounts for half of the line 

adjacent to CLB3, the PIPs of CLB3 (C4, G4, YQ), and the rest of the 
line and switch matrix capacitance following CLB3.



XILINX EPLD



XILINX EPLD
• The Xilinx EPLD family uses an interconnect bus known as Universal 

Interconnection Module ( UIM ) to distribute signals within the FPGA. The UIM, is 
a programmable AND array with constant delay from any input to any output. 

C G is the fixed gate capacitance of the EPROM device.
C D is the fixed drain parasitic capacitance of the EPROM device.
C B is the variable horizontal bus (“bit” line) capacitance.
C W is the variable vertical bus (“word” line) capacitance.

• The UIM has 21 output connections to each FB. Most (but not all) of the nine I/O 
cells attached to each FB have two input connections to the UIM, one from a chip 
input and one feedback from the macrocell output. For example, the XC7272 has 18 
I/O cells that are outputs only and thus have only one connection to the UIM,

• In the UIM: the XC7272, for example, has H = 126 tracks and V = 168/2 = 84 
tracks. The actual physical height, V , of the UIM is determined by the size of the 
FBs, and is close to the die height.



Altera MAX 5000 and 7000

• Altera MAX 5000 devices (except the EPM5032, which has 
only one LAB) and all MAX 7000 devices use 
a Programmable Interconnect Array ( PIA ) 

• The PIA is a cross-point switch for logic signals traveling 
between LABs. The advantages of this architecture (which 
uses a fixed number of connections) over programmable 
interconnection schemes (which use a variable number of 
connections) is the fixed routing delay. 

• An additional benefit of the simpler nature of a large regular 
interconnect structure is the simplification and improved speed 
of the placement and routing software.



Altera MAX 5000 and 7000

A simplified block diagram of the Altera MAX interconnect 
scheme. (a) The PIA (Programmable Interconnect Array) is 
deterministic—delay is independent of the path length. (b) Each 
LAB (Logic Array Block) contains a programmable AND array. 
(c) Interconnect timing within a LAB is also fixed.



Altera Max 9000

• The size of the MAX 9000 LAB arrays varies between 4 * 5 
(rows, columns) for the EPM9320 and 7*5 for the EPM9560. 
The MAX 9000 is an extremely coarse-grained architecture, 
typical of complex PLDs, but the LABs themselves have a 
finer structure.

• Sometimes we say that complex PLDs with arrays (LABs in 
the Altera MAX family) that are themselves arrays (of 
macrocells) have a dual-grain architecture .
The Altera MAX 9000 interconnect scheme. (a) A 4 *5 array of Logic Array Blocks (LABs), the same size 

as the EMP9400 chip. (b) A simplified block diagram of the interconnect architecture showing the 
connection of the FastTrack buses to a LAB.



Altera Flex

Altera Flex Interconnect Scheme

The Altera FLEX interconnect scheme. (a) The row and column FastTrack
interconnect. (b) A simplified diagram of the interconnect architecture showing 
the connections between the FastTrack buses and a LAB. Boxes A, B, and C 
represent the bus-to-bus connections.



Altera Flex
• Altera refers to the FLEX interconnect and MAX 9000 

interconnect by the same name, FastTrack, but the two are 
different because the granularity of the logic cell arrays is 
different. 

• The FLEX architecture is of finer grain than the MAX 
arrays—because of the difference in programming technology. 
The FLEX horizontal interconnect is much denser (at 168 
channels per row) than the vertical interconnect (16 channels 
per column), creating an aspect ratio for the interconnect of 
over 10:1 (168:16). 

• This imbalance is partly due to the aspect ratio of the die, the 
array, and the aspect ratio of the basic logic cell, the LAB.



LOW LEVEL PROGRAMMING 
LANGUAGES

• ABEL is a PLD programming language from Data I/O.
• CUPL is a PLD design language from Logical Devices.
• PALASM is a PLD design language from AMD/MMI.



module MyChip_ASIC(); ... (code to model ASIC I/O) 
... endmodule ;

• This top-level Verilog module is used to simulate the ASIC I/O 
connections and any bus I/O during the earliest stages of 
design. Often the reason that designs fail is lack of attention to 
the connection between the ASIC and the rest of the system.

• As a designer, you proceed down through the hierarchy as you 
add lower-level modules to the top-level Verilog module. 
Initially the lower-level modules are just empty placeholders, 
or stubs , containing a minimum of code. For example, you 
might start by using inverters just to connect inputs directly to 
the outputs. You expand these stubs before moving down to 
the next level of modules.

VERILOG AND LOGIC SYNTHESIS



VERILOG AND LOGIC SYNTHESIS

• module MyChip_ASIC()
// behavioral "always", etc. ...
SecondLevelStub1 port mapping
SecondLevelStub2 port mapping
endmoduleInput1; endmodule
module SecondLevelStub2() ... assign Output2 = ~Input2;
of thStub1() ... assign Output1 = ~endmodule
module SecondLevelcomponent pieces 
Eventually the Verilog modules will correspond to the 

various e ASIC.



VHDL and Logic Synthesis
• Most logic synthesizers insist we follow a set of rules when we use a 

logic system to ensure that what we synthesize matches the behavioral 
description. Here is a typical set of rules for use with the IEEE VHDL 
nine-value system:

• logic values corresponding to states '1' , 'H' , '0' , and 'L' in any manner 
Can be used.

• Some synthesis tools do not accept the uninitialized logic state 'U' .
• You can use logic states 'Z' , 'X' , 'W' , and '-' in signal and variable 

assignments in any manner. 'Z' is synthesized to three-state logic.
• The states 'X' , 'W' , and '-' are treated as unknown or don’t care values.
• The values 'Z' , 'X' , 'W' , and '-' may be used in conditional clauses such 

as the comparison in an if or case statement. However, some synthesis 
tools will ignore them and only match surrounding '1' and '0' bits. 
Consequently, a synthesized design may behave differently from the 
simulation if a stimulus uses 'Z' , 'X' , 'W' or '-' . The IEEE synthesis 
packages provide the STD_MATCH function for comparisons.



EDIF

• The structure of EDIF is similar to the Lisp programming 
language or the Postscript printer language. This makes EDIF 
a very hard language to read and almost impossible to write by 
hand. 

• EDIF is intended as an exchange format between tools, not as 
a design-entry language. Since EDIF is so flexible each 
company reads and writes different “flavors” of EDIF. 



EDIF

• Within an EDIF file are one or more libraries of cell 
descriptions. Each library contains technology information that 
is used in describing the characteristics of the cells it contains. 
Each cell description contains one or more user-named views 
of the cell. 

• Each view is defined as a particular view Type and contains 
an interface description that identifies where the cell may be 
connected to and, possibly, a contents description that 
identifies the components and related interconnections that 
make up the cell.

• The semantics of EDIF are defined by the EDIF keywords . 
Keywords are the only types of name that can immediately 
follow a left parenthesis.



EDIF

• The EDIF syntax consists of a series of statements in the 
following format:

(keywordName {form})
• A left parenthesis (round bracket) is always followed by 

a keyword name , followed by one or more EDIF forms (a 
form is a sequence of identifiers, primitive data, symbolic 
constants, or EDIF statements), ending with a right 
parenthesis..



CFI Design Representation
• The CAD Framework Initiative ( CFI ) is an independent nonprofit 

organization working on the creation of standards for the electronic 
CAD industry. One of the areas in which CFI is working is the 
definition of standards for design representation ( DR ). The CFI 1.0 
standard [ CFI, 1992] has tackled the problems of ambiguity in the 
area of definitions and terms for schematics by defining 
an information model ( IM ) for electrical connectivity information.

• It helps to solidify the concepts of the terms and definitions such as 
cell, net, and instance that we have already discussed. However, 
there are additional new concepts and terms to define in order to 
present the standard model, so this is not a good way to introduce 
schematic terminology.

• The ASIC design engineer is becoming more of a programmer and 
less of a circuit designer. This trend shows no sign of stopping as 
ASICs grow larger and systems more complex. A precise 
understanding of how tools operate and interact is becoming 
increasingly important



CFI CONNECTIVITY MODEL



UNIT IV

SILICON ON CHIP DESIGN



System On Chip
• An System on Chip (SoC) is an integrated circuit that 

implements most or all of the function of a complete electronic 
system

• Four vital areas of SoC:

 Higher levels of abstraction

 IP and platform re-use

 IP creation – ASIPs, interconnect and algorithm

 Earlier software development and integration



SOC



Evolution of Microelectronics: the SoC
Paradigm

• Silicon Process Technology
0.13μm CMOS

~100 millions of devices, 3 GHz internal   Clock

• n of Microelectronics: the



Migration from ASICs to SoCs

• ASICs are logic chips designed by end customers to perform a 
specific function for a desired application. 

• ASIC vendors supply libraries for each technology they 
provide. In most cases, these libraries contain predesigned and 
preverified logic circuits.

• ASIC technologies are:

gate array 

standard cell 

full custom 



Migration from ASICs to SoCs

• An SoC is an IC designed by stitching together multiple stand-
alone VLSI designs to provide full functionality for an 
application. 

• An SoC compose of predesigned models of complex functions 
known as cores (terms such as intellectual property block, 
virtual components, and macros) that serve a variety of 
applications.  



Three forms of SoC design

1. ASIC vendor design: This refers to the design in which all the 
components in the chip are designed as well as fabricated by 
an ASIC vendor.

2. Integrated design: This refers to the design by an ASIC 
vendor in which all components are not designed by that 
vendor. It implies the use of cores obtained from some other 
source such as a core/IP vendor or a foundry.

3. Desktop design: This refers to the design by a fabless 
company that uses cores which for the most part have been 
obtained from other source such as IP companies, EDA 
companies, design services companies, or a foundry



SoC Design Challenges

• We must examine factors influencing the degree of difficulty 
and Turn Around Time (TAT) (the time taken from gate-level 
netlist to metal mask-ready stage) for designing ASICs and 
SOCs

• For an ASIC, the following factors influence TAT:
Frequency of the design
Number of clock domains
Number of gates
Density
Number of blocks and sub-blocks

• The key factor that influences TAT for SOCs is system 
integration (integrating different silicon IPs on the same IC). 



SoCs vs. ASICs
SoC is not just a large ASIC

Architectural approach involving significant design reuse
Addresses the cost and time-to-market problems

SoC methodology is an incremental step over ASIC 
methodology 

SoC design is significantly more complex

1.Need cross-domain optimizations

2. IP reuse and Platform-based design increase  productivity    

3. Even with extensive IP reuse, many of the ASICs design  

problems remain

4. Productivity increase far from closing design gap



From ASICs to SOC



SOC Benefits

Typical approach :

• Define requirements

• Design with off-the shelf chips

- at 0.5 year mark : first prototypes

- 1 year : ship with low margins/loss

• start ASIC integration

- 2 years : ASIC-based prototypes

- 2.5 years : ship, make profits (with competition)



SOC Benefits

• With SoC

• Define requirements

• Design with off-the shelf cores

- at 0.5 year mark : first prototypes

- 1 year : ship with high margin and market share



SOC Architecture



SOC Architecture
A typical SoC consists of:
• A microcontroller,microprocessor or digital signal processor core-

multiprocessor SoCs (MPSoC) having more than one processor core
• memory blocks including a selection of ROM,RAM,EEPROM AND Flash 

Memory.
• timing sources including Oscillators and PLLs.
• peripherals including Counter-timers, real-time timers and power -on reset 

generators
• external interfaces  including industry standards such as 

USB,Firewire,Ethernet.
• analog interfaces including ADCs and DACs
• A bus – either proprietary or industry-standard such as the AMBA bus 

from ARM Holdings – connects these blocks. DMA controllers route data 
directly between external interfaces and memory, bypassing the processor core 
and thereby increasing the data throughput of the SoC.





VOICE OVER IP SOC

• A gateway VoIP  SOC is a device used for functions such as 
Vocoders,echo cancellation,data/fax modems, and VoIP 
protocols.Currently there are number of these devices 
available from several vendors;typically these devices differ 
from each other by the type of functions and voice-processing 
algorithms they support.



VOICE OVER IP SOC

The human voice initially generates an analog signal.This signal is 
converted into a bit stream by an Analog/Digital (A/D) converter and 
then submitted to a multiple compression process. 
The Voice frames are integrated into a voice packet. First RTP (Real time 
protocol) packet with a 12 address byte header is created. Then an 8-byte 
UDP packet with the source and destination address is added. 



VOICE OVER IP SOC

• Finally, a 20 byte IP header containing source and destination 
gateway IP address is added.The packet is sent through the 
internet where routers ands switches examine the destination 
address. 

• When the destination receives the packet, the packet goes 
through the reverse process for playback. 

• A minimal VoIP implementation requires two functionalities. 
First, it should be able to connect to other VoIP phones and, 
second, voice data should be carried by the Internet. The first 
requirement is fulfilled by using signaling. The second one is 
achieved by using speech coding algorithms. 





Set-Top –Box-SOC



Set-Top –Box-SOC



INTELLECTUAL PROPERTY

• Utilizing the predesigned modules enables: 
to avoid reinventing the wheel for every new product, 
to accelerate the development of new products, 
to assemble various blocks of a large ASIC/SoC quite 
rapidly,
to reduce the possibility of failure based on design and
verification of a block for the first time.

• These predesigned modules are commonly called Intellectual 
Property (IP) cores or Virtual Components (VC). 



INTELLECTUAL PROPERTY
CATEGORIES

IP cores are classified into three distinct categories:
• Hard IP cores consist of hard layouts using particular physical design libraries 

and are deliverid in masked-level designed blocks (GDSII format). The 
integration of hard IP cores is quite simple, but hard cores are technology 
dependent and provide minimum flexibility and portability in reconfiguration 
and integration.

• Soft IP cores are delivered as RTL VHDL/Verilog code to provide functional 
descriptions of IPs. These cores offer maximum flexibility and 
reconfigurability to match the requirements of a specific design application, 
but they must be synthesized, optimized, and verified by their user before 
integration into designs.

• Firm IP cores bring the best of both worlds and balance the high performance 
and optimization properties of hard IPs with the flexibility of soft IPs.These
cores are delivered in form of targeted netlists to specific physical libraries 
after going through synthesis without performing the physical layout. 



Trade-offs among soft,hard and firm 
cores



Comparison of different IP formats



Example of IPs



IP Reuse and IP based SOC Design



Sonics’ SiliconBackplane
MicroNetwork Used in SOC Design 

Architecture
.



Silicon BackPlane

• Silicon backplane uses a standard core interface known as the 
open protocol (OCP),Which delivers the first openly licensed, 
core centric protocol. The OCP defines a comprehensive, bus –
independent, high performance, and configurable interface 
between IP cores and on-chip communication subsystems.OCP 
is a functional superset of Virtual socket Interface(VSI) 
Alliance virtual-component –interface(VCI) specification ,and 
enable SOC designers and semiconductor IP developers to 
prepare their cores for plug-and –play integration using 
Sonics’ Silicon Backplane.



Advantages of Silicon BackPlane
• When compared to traditional CPU bus On chip interconnect 

such as Sonics Silicon back plane has following advantages.

Higher Efficiency
Flexible Configuration
Guaranteed Bandwidth and latency   
Integrated arbitration



UNIT V

PHYSICAL AND LOW POWER 
DESIGN



Overview Of Physical Design Flow



Tips and guideline for physical design
1.Placement based synthesis



Placement Based Synthesis

• Placement is performed in four optimization phases:

1. Ire-placement optimization
2. In placement optimization
3. Post Placement Optimization (PPO) before clock tree 
synthesis (CTS)
4. PPO after CTS.

Pre-placement Optimization optimizes the netlist before 
placement, HFNs are collapsed. It can also downsize the cells.

.



Placement Based Synthesis
• In-placement optimization re-optimizes the logic based on 

VR. This can perform cell sizing, cell moving, cell bypassing, 
net splitting, gate duplication, buffer insertion, area recovery. 
Optimization performs iteration of setup fixing, incremental 
timing and congestion driven placement.

Post placement optimization before CTS performs netlist
optimization with ideal clocks. It can fix setup, hold, max 
trans/cap violations. It can do placement optimization based on 
global routing. It re does HFN synthesis.

Post placement optimization after CTS optimizes timing 
with propagated clock. It tries to preserve clock skew



Logical and Physical Hierarchy



Clock Design –Two Level Clock Design 
Tree



Multiple Placements and Routing



Modern physical design techniques-

• In the age of deep submicron design, where 10+ million gates 
of logic have to fit on a single device running at 250+ MHz, 
traditional physical-design techniques are not capable of 
handling these new challenges. The problems with the 
traditional physical-design techniques can be summarized as 
follows :

• Timing closure is either unachievable or takes too long to 
finish.

• Too many iterations between front end and back end for each 
design.

• Unroutable designs for the target die size .
• As the device geometries shrink to 0.11 micron and beyond, 

new tools, techniques, and methodologies are needed to 
overcome the problems we face with traditional approaches.



Silicon Virtual Prototyping- Prototype 
Environment



Design Flow for Silicon Virtual 
Prototyping



Low power Design Techniques and 
Methodologies

Levels of Design power optimization



Low power Design Techniques and 
Methodologies

• Low-power techniques vary depending on the level of the 
design targeted, ranging from semiconductor technology to the 
higher levels of abstraction. These abstraction levels are 
classified as algorithm, architecture, RTL, gate, and transistor 
levels.

• Higher levels of design abstraction shown in provide larger 
amounts of power reduction for chip designs. In higher levels 
of abstraction, such as algorithm level, designers have a 
greater degree



Low Power Design Techniques

RESEARCH EFFECTS IN LOW POWER DESIGN

Reduce the Active Load:
• Minimize the circuits.
• Use more efficient Design.
• Charge Recycling
• More efficient layout

Technology Scaling:
• Threshold should scale.
• Leakage should be reduced.
• Dynamic Voltagescaling.



Low Power Design Techniques
Reduce Switching activity:
• Conditional Clock.
• Conditional Precharge.
• Switching-off inactive blocks.
• Conditional Execution.

Run it Slower:
• Use Parallelism.
• Less pipeline stag



LOW-POWER DESIGN TOOLS

• Numerous EDA tools are available to help IC designers achieve 
low-power designs. These tools are classified into two main 
categories:

• Power-analysis and power-estimation tools
• Power-optimization tools
• Power-estimation tools estimate the power of a specific 

design by identifying its high power consuming modules at 
early stages of the design. These tools give IC designers the 
ability to make high-level design decisions to reduce power or 
leave the design untouched based on a set of specific power 
constraints.

• Power-optimization tools come into play after the decision is 
made by IC designers to reduce the power. 



Low power Design tool Characteristics



TIPS AND GUIDELINES FOR LOW-
POWER DESIGN

• The most effective power-optimization techniques are 
the higher level ones. These are algorithmic and 
architectural optimization techniques.

• Use low-power process and libraries. There are low-
power standard cell libraries for 0.18 µm such as Xemics
CooLib. (Refer to reference 16 for more information.) The 
low-power libraries should be used in conjunction with a 
low-power process that is available from most ASIC 
vendors.

• Decrease the dynamic power by reducing all of the terms 
in the fundamental equation of power:



Low power Design tools



Low Power EDA Tools

POWERTHEATER
.PowerTheater is a comprehensive set of power tools that create 

maximum power efficiency for SOC designs at the 
architectural level, RTL level, and gate level. This family of 
full-chip power tools can be used throughout the IC design 
process. 

• PowerTheater products (PowerTheater Analyst and 
PowerTheater Designer) analyze, display, and help the user to 
reduce the power for the whole chip and each individual 
module. These tools interface directly with Verilog and VHDL 
simulators to capture behavioral and gate-level simulation 
activity.

Key Features
• SOC RTL power analysis
• Flexible and easy-to-use RTL power optimization
• Handles clock, memory, data-path control logic, etc



Low Power EDA Tools
POWERTHEATER ANALYST
• PowerTheater Analyst, built with proven Watt Watcher 

technology, represents a superior alternative to tedious and 
error-prone manual methods, such as spreadsheet analysis, as 
well as gate- and transistor-level methods which require the 
design to be synthesized in pieces and then simulated at very 
detailed levels of abstraction. 



Low Power EDA Tools
POWERTHEATER ANALYST

• Using this capability at both RT and gate level, designers can 
perform detailed power analysis for the entire chip or any set 
of sub-blocks, including memory, I/O, logic, and clock trees. 

• Peak and time-based power is reported on a user-defined time 
interval, down to the Verilog or VHDL simulation resolution. 
PowerTheater Analyst addresses issues such as power bus 
Sizing, electromigration, and reliability 



Low Power EDA Tools
POWERTHEATER DESIGNER
• The Power Theater Designer product uses Watt Watcher's 

proven RTL estimation technology to build a detailed, 
quantitative map of the power in the design. 

• Power Theater Designer then invokes a suite of patent-pending 
agents called Watt Bots that automatically measure the impact 
of many potential power-saving architectural changes. Each 
Watt Bot is designed to identify a specific type of power 
reduction opportunity. 

• The suite of Watt Bots covers all major types of circuitry in the 
design, including control, data path, I/O, memory, and clocks. 
For each opportunity identified, Power Theater Designer 
proposes specific RTL design modifications and quantifies the 
power savings that would result, together with certain potential 
trade-offs.


